A new family of tight sets in $${\mathcal {Q}}^{+}(5,q)$$ Q + ( 5 , q )

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new family of tight sets in Q+(5, q)

In this paper, we describe a new infinite family of q −1 2 -tight sets in the hyperbolic quadrics Q(5, q), for q ≡ 5 or 9 mod 12. Under the Klein correspondence, these correspond to Cameron–Liebler line classes of PG(3, q) having parameter q −1 2 . This is the second known infinite family of nontrivial Cameron–Liebler line classes, the first family having been described by Bruen and Drudge with...

متن کامل

A note on lacunary series in $mathcal{Q}_K$ spaces

In this paper, under the condition that $K$ is concave, we characterize lacunary series in $Q_{k}$ spaces. We improve a result due to H. Wulan and K. Zhu.

متن کامل

a note on lacunary series in $mathcal{q}_k$ spaces

in this paper, under the condition that $k$ is concave, we characterize lacunary series in $q_{k}$ spaces. we improve a result due to h. wulan and k. zhu.

متن کامل

A NEW CHARACTERIZATION OF SIMPLE GROUP G 2 (q) WHERE q ⩽ 11

Let G be a finite group , in this paper using the order and largest element order of G we show that every finite group with the same order and largest element order as G 2 (q), where q 11 is necessarily isomorphic to the group G 2 (q)

متن کامل

A family of ovoids of the Hermitian Surface in PG(3, q) with q ≥ 5 odd

Multiple derivation of the classical ovoid of the Hermitian surface H(3, q) of PG(3, q) is a well known, powerful method for constructing large families of non classical ovoids of H(3, q). In this paper, multiple derivation is generalised and applied to non-classical ovoids. A resulting new family of ovoids is investigated. Mathematics Subject Classification (2000). Primary: 51E20, Secondary: 5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Designs, Codes and Cryptography

سال: 2014

ISSN: 0925-1022,1573-7586

DOI: 10.1007/s10623-014-0023-9